Aarnio modulates the resistive force of rotating, tilting and rolling an office chair for new applications.

We propose a new type of haptic output for foreground interactions on an interactive chair, where input is carried out explicitly in the foreground of the user’s consciousness. This type of force output restricts a user’s motion by modulating the resistive force when rotating a seat, tilting the backrest, or rolling the chair. These interactions are useful for many applications in a ubiquitous computing environment, ranging from immersive VR games to rapid and private query of information for people who are occupied with other tasks (e.g. in a meeting). We carefully designed and implemented our proposed haptic force output on a standard office chair and determined the recognizability of five force profiles for rotating, tilting, and rolling the chair. We present the result of our studies, as well as a set of novel interaction techniques enabled by this new force output for chairs.

Publication Shan-Yuan Teng, Da-Yuan Huang, Chi Wang, Jun Gong, Teddy Seyed, Xing-Dong Yang, and Bing-Yu Chen. 2019. Aarnio: Passive Kinesthetic Force Output for Foreground Interactions on an Interactive Chair. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ‘19). ACM, New York, NY, USA, Paper 672, 13 pages. DOI
Paper PDF (10.6MB)